
TP 0x01 Codesign CHERIF Bilel

PS Gpio, timer, and interrupts manipulation

Windows :
Execute vivado using desktop shortcut
Linux :
Open terminal
Source the vivavdo setting64.sh file using the command
source /path to vivado/settings64.sh
Type vivado on terminal window

EX01 :

In this exercise we will use our ps gpios to blink a led as a first
embedded software practice.

steps :

In the Flow Navigator window, select Create Block Design from the IP
Integrator section

Enter a name for the design in the Design name box

In the Vivado IP Integrator Diagram canvas, right-click anywhere and
select Add IP

Enter zynq in the search field and select the ZYNQ7 Processing System

The next step is to connect the DDR and FIXED_IO interface ports on
the Zynq PS to the top-level interface ports on the design.

Click the Run Block Automation option from the Designer Assistance
message at the top of the Diagram window,

ps: In
the Run Block Automation dialogue, ensure that the option to Apply
Board Preset is selected and click OK. The external connections for
both the DDR and FIXED_IO interfaces will now be generated.

Your block diagram should now resemble to the following figure:

- export the hardware and lunch the sdk
- Create a test software application to blink the mio 7 led.
- Configure the mio 50 as input, read the mio input and use it to
toggle the led.

EX02 :

in this exercise we will use our global timer to blink our LED.

- include the global timer bare metal driver #include "xscutimer.h" #include "xscutimer.h"
- Declare two structs for the timer instance and timer config

XScuTimer my_Timer;
XScuTimer_Config *Timer_Config;

- Use XscuTimer_LookupConfig as the one used for gpios to initialise XscuTimer_LookupConfig as the one used for gpios to initialise
the timer configuration instance.the timer configuration instance.
- Use XscuTimer_CfgInitialize to initialize the timer instance.XscuTimer_CfgInitialize to initialize the timer instance.
-- The global timer uses half of the CPU clock . Use the function The global timer uses half of the CPU clock . Use the function
XscuTimer_LoadTimer to load our counter with a value equivalent to 1 XscuTimer_LoadTimer to load our counter with a value equivalent to 1
second.second.
- start the counter using the function - start the counter using the function XscuTimer_Start and use the XscuTimer_Start and use the
function XscuTimer_GetCounterValue to check if our counter finished function XscuTimer_GetCounterValue to check if our counter finished
the counting to the desired value. When the count is finished toggle the counting to the desired value. When the count is finished toggle
the led status and restart the counter using the function the led status and restart the counter using the function
XscuTimer_RestartTimer.XscuTimer_RestartTimer.

EX03 :

In the ARM Cortex-A9 processor of the Zynq all interrupts are managed
by and connected via the general interrupt controller.

Interrupts can be generated by many different peripherals, but
for this exercise we will be generating interrupts from the
Snoop Control Unit Timer peripheral that we used in the
previous exercise. In the last exercise we were operating the
timer in polled mode, although the timer peripheral is in fact
capable of producing interrupts.
The Zynq documentation states that an interrupt is generated by the
timer whenever it reaches zero, so we shall use this feature to our
advantage.In order to use interrupts, we need to use a few more driver
functions to enable the interrupt functionality on the timer, to
enable interrupts on the ARM processor, and also to set up the
interrupt controller.
In this exercise we will use an interrupt that will indicate the end
of our counting to drive the led blinking through this logic we will
get rid of comparing our counting value to toggle the led output
value.

- Create an instances of the general interrupt controller (GIC) and
initialize it using the Lookup_Config and CfgInitialize functions.

- Follow the guide document to attach the timer generated interrupt to
a handling function that will be executed by our CPU core by creating
two functions the first to setup our interrupt and the second as a
timer interrupt handler.

static void SetupInterruptSystem(XScuGic *GicInstancePtr,
XScuTimer *TimerInstancePtr, u16 TimerIntrId);

static void TimerIntrHandler(void *CallBackRef)

- finally use the mio 50 and mio 51 buttons to increase and decrease
the blinking frequency(blinking time interval should be for example at
least 0.5s and the maximum is 5s).

