
TD 0x01 Codesign Bilel

ready/valid handshake communications channel

EX01:

To understand ready/valid handshake lets suppose that we have
a master and a slave modules, some data will be written into 
a slave register.
When both slave and master are ready to receive data and 
ready to send data respectively the transaction will occur.

Master Slave

wready

wvalid

data

clk

rst



- Extract the condition using the ready and valid signals to 
allow reading the data line?
- write a process that allows the reset of the bus lines?
- write a process to activate the read from the data line?
- write a process that reads the data and stock them in a 
register when the handshake occurs?
- write a testbench to validate your hdl module?

EX02:

We need to make a ready/valid handshake communications write 
channel for this purpose we will specify this channel as 
described bellow:

Master Slave

awvalid

awready

addresse

wready

wvalid

data

clk

rst

reg_out

bready

bvalid



Bus ports

clk Clock signal input

rst Reset signal input

awready Address write ready
: generated by the 
slave to indicate 
that slave is ready
for latching the 
address

Output 

awvalid Address write valid
:
generated by the 
master to indicate 
that the write 
address is valid.

Input 

wready Write ready: 
generated by the 
slave to indicate 
that slave is ready
for latching the 
address

Output

wvalid Write valid: 
generated by the 
master to indicate 
that the data is 
valid.

Input 

data Data to be written input

address Register Address 
where to perform 
the write operation

input

reg_out Output the content 
of the first 
register

output

bready Write response 
ready: generated by
the master to 
indicate that it’s 
ready for write 
response.

input

bvalid Write valid: 
generated by the 
master to indicate 
that the data is 
valid.

output



Bus datawidth : 8 bits
Slave data registers number: 2 register.

For this purpose we need 5 processes, the processes function 
is described bellow:

awready generation process:
awready is asserted for one clk clock cycle when both awvalid
and wvalid are asserted(both equal to one). awready is de-
asserted when reset is low.
slave is ready to accept write address when there is a valid 
write address and write data on the write address and data 
bus.

awaddr latching process:
a process should be used to used to latch the address when 
both 
awvalid and wvalid are valid(both equal to one).

wready generation process:
wready is asserted for one clk clock cycle when both awvalid 
and wvalid are asserted. wready is de-asserted when reset is 
low. 

Data writing implementation process:
Implement memory mapped register select and write logic 
generation, 
The write data is accepted and written to memory mapped 
registers when awready, wvalid, wready and wvalid are 
asserted.

Use signals to store data in the 4 registers

signal reg1 : std_logic_vector(width-1 downto 0);

signal reg2 : std_logic_vector(width-1 downto 0);

NB :Use the following signals to output both awready and 
awvalid

awready <= rvh_awready;
wready <= rvh_wready;



Write response generation process:
Implement write response logic generation

The write response and response valid signals are asserted by
the slave when wready, wvalid, wready and wvalid are 
asserted.  

This marks the acceptance of address and indicates the status
of write transaction.

- The following FSM illustrates the mechanism of the 
interfaces

-extract the conditions to emit awready, wready ,and bvalid 
by the slave.

- write VHDL file to describe a salve component with a 
ready/valid handshake communications capability.

- write a testbench to test the communication bus.

NB:

- the following process to generate simulation clock

Constant ClockPeriod : TIME := 5 ns;



 -- Generate S_AXI_ACLK signal
 GENERATE_REFCLOCK : process
 begin
   wait for (ClockPeriod / 2);
   ClockCount:= ClockCount+1;
   tb_clk <= '1';
   wait for (ClockPeriod / 2);
   tb_clk <= '0';
 end process;

wait until and wait for can be used to wait for a condition 
event and for a certain simulation clock value respectively:

wait until (tb_awready and tb_wready) = '1';
wait for 5 ns;

- the following process could be used in your TB to simulate 
the behavior of a master trying to send some data through the
interface when sendIt signal is high

send : PROCESS
 BEGIN
    tb_awvalid<='0';
    tb_wvalid<='0';

    loop
        wait until sendIt = '1';
        wait until tb_clk = '0';
            tb_awvalid<='1';
            --tb_awvalid<='0'; --let's mess a little bit with
our slave
            tb_wvalid<='1';  -- Master in ready
        wait until (tb_awready and tb_wready) = '1';  
--Client ready to read address/data        
           tb_bready<='1'; -- Master ready to receive 
response
        wait until tb_bvalid = '1';  -- Write result valid

wait until tb_clk = '0';
            tb_awvalid<='0';
            tb_wvalid<='0';
            tb_bready<='1';
        wait until tb_bvalid = '0';  -- All finished
            tb_bready<='0';
    end loop;
 END PROCESS send;


