
Course 01-2: Zynq
architecture overview

Bilel CHERIF
5A-SIEC

Software/Hardware partitioning

Profling
Profling is a form of program analysis that is
used to aid the optimization of a software
application. It is used to measure a number
of properties of application code, including:

● Memory usage

● Execution time of function calls

● Frequency of function calls

● Instruction usage

Profling

The use of profling allows you to identify
bottlenecks in the code execution that may
be a result of inefcient code, or poor
communication between function
interactions with a module in the PL or
another function within software.

without executing the
software program

performed while the software
application is running on a
physical or virtual processor

Example

Lets suppose that we have :

● 500 MHz ==> cpu freq.

● 0.5ns per cycle.

● Three functions : X1, X2, X3

 X1 independent from X2, X3 depends on X1 and X2

● Hardware cost : X2 > X1 >X3

● Cycle cost: X1=10, X2=12, X3=8.

C=5 x1+6 x2+4 x3

x1+x2+x3≤10ns
x1 , x2 , x3∈{0,1}

APU
ARM cpu :

● The ARM is a RISC machine that uses
a load-store architecture.

● All ARM instruction codes are 32 bits,
and the ARM memory bus is 32 bits.

● “Conditional execution” for
instructions.

if(x == 0)y = 1;

Load x in r0
cmp r0,#0
bne endif
then:
mov r1, #1
// now store r1 in [y]
Endif:
……

APU

Condition fags:

● N is a ‘1’ if the last ALU operation
produced a negative number;

● Z is a ‘1’ if the last operation produced a
‘0’ result;

● C is a ‘1’ if the last operation produced a
carry-out;

● V is a ‘1’ if the last operation produced
an overfow condition.

Current Program Status Register (CPSR)

Example
MOV R2,#10 @ R2 <- 10; R2 is loop index

myloop:

ADD R1,R1, #1 @ Increment R1

SUBS R2,R2, #1 @ Decrement R2

BNE myloop @ If R2 != 0, branch to myloop

MOV R4, 0xbeef @ Continue on with program...

Exceptions
Special condition that requires a processor's immediate

attention

 Important external event that has
priority over normal program

executon

Hardware
Interrupt

Abnormal internal event
(division by zero, illegal

instruction)

Exception

User-generated SI
Software
Interrupt

 Sources of an
excepton

Exceptions
ARM processor modes :

● User mode is the basic mode in which application
programs run. User mode is the only unprivileged
mode, and it has restricted access to system
resources. Typically, a processor spends more than
99% of its time in user mode.

● System mode provides unrestricted access to all
system resources.

● Supervisor mode also provides unrestricted access
to all system resources.

● Abort mode is entered if a program attempts to
access a non-existing memory location.

● Undefned mode is entered for attempt to execute
an unimplemented instruction.

● IRQ mode is entered in response to a normal
interrupt request from an external device.

● FIQ mode is entered in response to a fast interrupt
request from an external device. It is used to
provide faster service for more urgent requests.

Current Program Status Register (CPSR)

Exceptions
● ARM switches to IRQ (or FIQ) mode.
● Saves the current PC in the local LR and

the current CPSR in the local SPSR
● Sets the IRQ (or FIQ) disable bit in the

CPSR to a ‘1’.
● Loads the proper vector into the PC

(vector 0x18 for IRQ, and 0x1C for FIQ).
● The instruction stored at the vector

address will be a branch to a generic
Interrupt handler.

● The user-written interrupt handler must
determine what the source of the
interrupt was (by checking the
interrupt’s ID#), and then branch to the
code to deal with the actual interrupt.

Neon engine
● Armv7-A and AArch32 have 32 x 64-bit

NEON registers (D0-D31). These registers
can also be viewed as 16x128-bit registers
(Q0-Q15).

● Variety of operations are available through
special instructions dedicated to be
executed on the unit.

Neon engine
Vectorizing compilers

To enable automatic vectorization, you
must add -mfpu=neon and -ftree-
vectorize to the GCC command line. For
example:

arm-none-linux-gnueabi-gcc -mfpu=neon
-ftree-vectorize -c vectorized.c

NEON assembly

VADD.I8 D0, D1, D2

VMULL.S16 Q2, D8, D9

NEON intrinsics

#include<arm_neon.h>

……..

foat32_t in1, in2, out;

in1 = vld1q_f32(src1);

in2 = vld1q_f32(src2);

out = vaddq_f32(in1, in2);

vst1q_f32(dst, out);

NEON optimized libraries

Arm’s open source project.

Currently, the Ne10 library provides
some math, image processing and
FFT function.

PS

Software
optimizationCo-processors

Performance

PS

Processing system (PS)

● Double core A9 processor.

● Co-processors.

● Various peripherals.

● MIO

● OCM

● DRAM Controller.

● Flash controller.

PL

Operators sharing
Original code:

r <= a+b when boolean_exp else a+c;

Revised code:

src0 <= b when boolean_exp else c;

r <= a + src0;

Functionality sharing
A large circuit involves lots of functions.

Several functions may be related and have common characteristics.

Several functions can share the same circuit.

Needs the understanding and insight of the designer.

sum<=a+b when ctrl =’0’ else a-b;

r<=std_logic_vector(sum);

src0 <= a;

src1 <= b when ctrl=’0’ else not b;

cin <= “0” when ctrl=’0’ else “1”;

sum <= src0 + src1+cin;

r <=r<=std_logic_vector(sum);

Layout related optimization

Example :

Cascaded xor function

y=a1 xor a2 ….xor a3

● Longer path mean longer delay.

● Rectangular shapes usually are
favorable.

Signal selection

If S=’0’ then

 C <= A;

else

 C <= B;

C <= B when C else A

Large multiplixers when implemented in FPGA consume large number of CLB resources, as
the number of input increases, tristate solution ofers competitive timing.

Pipelining
In FPGA digital logic takes place in
parallel. One solution to
sequencing operations is to create
a giant state machine. The reality,
though, is that an FPGA tends to
create all the logic for every state
at once, and then only select the
correct answer at the end of each
clock tick.

Pipelining tends to be faster than
the state machine approach for
accomplishing the same algorithm,
and it can even be more resource
efcient, although it isn’t
necessarily so

Global valid signal (fxed data rate)

Traveling CE signal (fxed execution time at each stage)

Simple handshake

Pipelining
Bufered handshake

DSP
DSP48E1 slices features:

● 48 bits
add/substract/accumulate.

● 27 x 18 bits multiplier.

● 25 bits pre-adder.

● Cascade path.

● Pipeline registers for high speed.

● Pattern detector.

● SIMD operations.

Example : P=(A+D).B

DSP

Developing RTL to take advantage of the SIMD
capabilities of the DSP48 is straight forward. We
can do this in our RTL by setting an attribute for
the synthesis tool to detect such that it can infer
the correct DSP48 implementation function and
mode / OPCODE.

● In our source code, the attributes are defned as
shown below:

(VHDL)

attribute use_dsp : string;

attribute use_dsp of arch : architecture is “simd”;

Runtime reconfguration

XADC

The XADC includes:

● Dual 12-bit ADC.

● 1 Mega sample per second (MSPS).

● On-chip sensors(temperature and
voltage).

● Range of operating modes, for example,
externally triggered and simultaneous
sampling on both ADCs.

XADC
12-bit resolution conversion.

● Built in digital gain and ofset
calibration.

● On-chip thermal and Voltage
sensors.

● Sample rate of 1 MSPS.

Boot sequence
● Boot ROM which is initialized at power

-on. The value of the boot mode
strapping pins of the device determines
the boot mode.

● The boot mode defnes from which of
the supported interfaces JTAG, QSPI
Flash or SD card .

● Boot Rom load the FSBL image from the
specifed interface to the OCM. Once the
image is transferred to the OCM, the
control of the CPU is handed over to the
FSBL.

● Typically, the FSBL contains instructions
for the CPU to further confgure the PS ,
and to confgure the PL using Processor
Confguration Access Port (PCAP) if the a
bitstream is available.

Boot sequence
JTAG Mode :

● Initialize cpu.

● Determine boot mode(JTAG).

● Confgure JTAG chain.

● Confgure PL using JTAG

● Upload PS software application to the
OCM.

● The CPU start application execution.

Note: Internal Confguration Access Port
(ICAP). enables a user to write software
programs that can modify FPGA circuit
structure and functionality during the
operation of the circuit.

Boot sequence
Two boot modes are available:

● Secured boot.

● Unsecured boot.

● The boot ROM provides support for loading
both encrypted (secure) and unencrypted
(non-secure) boot images. The boot ROM
also supports execution of the stage-1 boot
image directly from linear fash sources
(QSPI) only when using the eXecute-In-Place
(XIP) function. This feature is only available
when using non-secure boot images.

Zynq

Thank you :)

Appendix

IO Peripherals

7-Series Xilinx FPGAs ICTP 34

 I²C bus specifcaton version 2

 Programmable to use normal (7-bit) or extended (10-bit) addressing

 Programmable rates: fast mode (400 kbit/s) , standard (10 0kbits/s), and low (10 kbits/s)
o Rates higher than 400 kbits/sec are not supported

 Programmable as either a master or slave interface

 Capable of clock synchronizaton and bus arbitraton

 Fully programmable slave response address

 Reversible FIFO operaton supported

 16-byte bufer size

 Slave monitor mode when set up as master

 I²C bus hold for slow host service

 Slave tmeout detecton with programmable period

 Transfer status interrupts and fags

7-Series Xilinx FPGAs ICTP

I2C

35

 Up to 24-MHz CAN_REF clock as system clock

 64 message-deep receiver and transmiter bufer

 Full CAN 2.0B compliant; conforms to ISO 11898-1

 Maximum baud rate of 1 Mb/s

 Four message flters required for bufer mode

 Listen-only mode for test and debug

 External PHY I/O

 “Wake-on-message”

 Time-stamping for receive messages

 TX and RX FIFO watermarking

 Excepton: no power-down mode

7-Series Xilinx FPGAs ICTP

CAN

36

 Support for version 2.0 of SD Specifcaton

 Full-speed (4 MB/s) and low-speed (2 MB/s) support
o Low-speed clock (400 KHz) used untl bandwidth negotated

 1-bit and 4-bit data interface support

 Host mode support only

 Built-in DMA controller

 Full-speed clock (0-50 MHz) with maximum throughput at 25 MB/s

 1 KB data FIFO interface

 Support for MMC 3.31 card at 52 MHz

 Support for memory, I/O, and combo cards

 Support for power control modes and interrupts

7-Series Xilinx FPGAs ICTP

SD-SDIO

37

 Master or slave SPI mode

 Four wire bus: MOSI, MISO, SCK, nSS

 Supports up to three slave select lines

 Supports mult-master environment

 Identfes an error conditon if more than one master detected

 Software can poll for status or functon as interrupt-driven device

 Programmable interrupt generaton

 50-MHz maximum external SPI clock rate

 Selectable master clock reference

 Integrated 128-byte deep read and write FIFOs

 Full-duplex operaton ofers simultaneous receive and transmit

7-Series Xilinx FPGAs ICTP

SPI

38

 Two UARTs

 Programmable baud rate generator

 64-byte receive and transmit FIFOs

 6, 7, or 8 data bits and 1, 1.5, or 2 stop bits

 Odd, even, space, mark, or no parity with parity, framing, and overrun error detecton

 "Line break" generaton and detecton

 Normal, automatc echo, local loopback, and remote loopback channel modes

 Interrupts generaton

 Support 8 Mb/s maximum baud rate with additonal reference clock or up to 1.5 Mb/s
with a 100-MHz peripheral bus clock

 Modem control signals: CTS, RTS, DSR, DTR, RI, and DCD (through EMIO)

 Simple UART: only two pins (TX and RX through MIO)

7-Series Xilinx FPGAs ICTP

UART

39

 Two USB 2.0 hardened IP peripherals per Zynq device
o Each independently controlled and confgured

 Supported interfaces
o High-speed USB 2.0: 480 Mbit/s
o Full-speed USB 1.1: 12 Mbit/s
o Low-speed USB 1.0: 1.5 Mbit/s
o Communicaton starts at USB 2.0 speed and drops untl sync is achieved

 Each block can be confgured as host, device, or on-the-go (OTG)

 8-bit ULPI interface

 All four transfer types supported: isochronous, interrupt, bulk, and control

 Supports up to 12 endpoints per USB block in the Zynq device
o Running in host mode

 Source-code drivers

7-Series Xilinx FPGAs ICTP

USB

40

 Control and confguraton registers for each USB block

 Software-ready with standalone and OS linux source-code delivered
drivers

 EHCI compliant host registers

 USB host controller registers and data structures compliant to Intel
EHCI specifcatons

 Internal DMA

 Must use the MIO pins

7-Series Xilinx FPGAs ICTP

USB 2.0 OTG

41

7-Series Xilinx FPGAs ICTP

USB 2.0 Usage Example

42

 Tri-mode Ethernet MAC (10/100/1G) with natve
GMII interface

 IEEE1588 rev 2.0
o Time stamp support
o 1 us resoluton

 IEEE802.3

 RGMII v2.0 (HSTL) interface to MIO pins
o Need MIO set at 1.8V to support RGMII speed
o Need to use large bank of MIO pins for two Ethernets

 MII/GMII/SGMII/RGMII ver1.3 (LVCMOS) and ver2.0 (HSTL) interface available
through EMIO (programmable logic I/O)

 TX/RX checksum ofoad for TCP and UDP

 Internal DMA and wake on LAN

7-Series Xilinx FPGAs ICTP

Gigabit Ethernet Controller

43

7-Series Xilinx FPGAs ICTP

Gigabit Ethernet Controller

44

Application
Processor Unit

(APU)

7-Series Xilinx FPGAs ICTP 45

7-Series Xilinx FPGAs ICTP

APU

46

 Dual ARM® Cortex™-A9 MPCore
 with NEON extensions

o Up to 800-MHz operaton
o 2.5 DMIPS/MHz per core
o Separate 32KB instructon and data

caches

 Snoop Control Unit (SCU)
o L1 cache snoop control
o Accelerator coherency port

 Level 2 cache and controller
o Shared 512 KB cache with parity

7-Series Xilinx FPGAs ICTP

APU Components

47

 General interrupt controller (GIC)

 On-chip memory (OCM): RAM and boot ROM

 Central DMA (eight channels)

 Device confguraton (DEVCFG)

 Private watchdog tmer and tmer for each CPU

 System watchdog and triple tmer counters shared between CPUs

 ARM CoreSight debug technology

7-Series Xilinx FPGAs ICTP

APU Sub-Components

48

 All registers for both CPUs are grouped into two contguous 4KB
pages
o Accessed through a dedicated internal bus

 Fixed at 0xF8F0_0000 with a register block size of 8 KB
o Each CPU uses an ofset into this base address

7-Series Xilinx FPGAs ICTP

APU Address Map

0x0000-0x00FC SCU registers

0x0100-0x01FF Interrupt controller interface

0x0200-0x02FF Global tmer

0x0600-0x06FF Private tmers and watchdog tmers

0x1000-0x1FFF Interrupt distributor

49

 NEON is the ARM codename for the vector processing unit
o Provides multmedia and signal processing support

 FPU is the foatng-point unit extension to NEON
o Both NEON and FPU share a single set of registers

 NEON technology is a wide single instructon, multple data (SIMD)
parallel and co-processing architecture
o 32 registers, 64-bits wide (dual view as 16 registers, 128-bits wide)
o Data types can be: signed/unsigned 8-bit, 16-bit, 32-bit, 64-bit, or 32-bit foat

7-Series Xilinx FPGAs ICTP

NEON Main Features

50

 Separate instructon and data caches for each processor

 Caches are four-way, set associatve and are write-back

 Non-lockable

 Eight words cache length

 On a cache miss, critcal word frst flling of the cache is performed
followed by the next word in sequence

7-Series Xilinx FPGAs ICTP

L1 Cache Features

51

 512K bytes of RAM built into the SCU
o Latency of 25 CPU cycles
o Unifed instructon and data cache

 Fixed, 256-bit (32 words) cache line size

 Support for per-master way lockdown between multple CPUs

 Eight-way, set associatve

 Two AXI interfaces
o One to DDR controller
o One to programmable logic master (to peripherals)

7-Series Xilinx FPGAs ICTP

L2 Cache Features

52

 The on-chip memory (OCM) module contains 256 KB of RAM and
128 KB of ROM (BootROM).

 It supports two 64-bit AXI slave interface ports, one dedicated for
CPU/ACP access via the APU snoop control unit (SCU), and the other
shared by all other bus masters within the processing system (PS)
and programmable logic (PL).

 The BootROM memory is used exclusively by the boot process and is
not visible to the user.

7-Series Xilinx FPGAs ICTP

On-Chip Memory (OCM)

53

 Shares and arbitrates functons between the two processor cores
o Data cache coherency between the processors
o Initates L2 AXI memory access
o Arbitrates between the processors requestng L2 accesses
o Manages ACP accesses
o A second master port with programmable address fltering between OCM and

L2 memory support

7-Series Xilinx FPGAs ICTP

Snoop Control Unit (SCU)

54

 High-performance, cache-to-cache transfers

 Snoop each CPU and cache each interface
independently

 Coherency protocol is MESI
o M: Cache line has been modifed
o E: Cache line is held exclusively
o S: Cache line is shared with another CPU
o I: Cache line is invalidated

 Uses Accelerator Coherence Port (ACP) to allow
coherency to be extended to PL

7-Series Xilinx FPGAs ICTP

Cache Coherency Using SCU

55

 A set of of special registers in the APU used to confgure the PS
o Power and clock management
o Reset control
o MIO/EMIO management

 Accessible through software
o Standalone BSP support

7-Series Xilinx FPGAs ICTP

System Level Control Register (SLCR)

SLCR Categories

System clock and reset control/status registers TrustZone control register

APU control registers SoC debug control registers

DMA initialization registers MIO/IOP control/status registers

DDR control registers Miscellaneous control registers

PL reset registers RAM and ROM control registers

56

Zynq Clocks

7-Series Xilinx FPGAs ICTP 57

7-Series Xilinx FPGAs ICTP

System Clocks

58

7-Series Xilinx FPGAs ICTP

CPU Clock

CPU Clock 6:2:1 4:2:1 Clock Domain Modules
CPU_6x4x 800 MHz

(6 tmes faster than CPU_1x)
600 MHz

 (4 tmes faster than CPU_1x)
CPU clock freq, SCU, OCM arbitrer,
NEON and L2 Cache

CPU_3x2x 400 MHz
(3 tmes faster than CPU_1x)

300 MHz
 (2 tmes faster than CPU_1x)

APU Timers

CPU_2x 266MHz
(2 tmes faster than CPU_1x)

300 MHz
 (2 tmes faster than CPU_1x)

IOP, central interconnect, master
interconeect, slave interconnect and
OCM RAM

CPU_1x 133 MHz 150 MHz IOP, AHB and APB interface busses

59

7-Series Xilinx FPGAs ICTP

PL Clocks

60

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	IO Peripherals
	I2C
	CAN
	SD-SDIO
	SPI
	UART
	USB
	USB 2.0 OTG
	USB 2.0 Usage Example
	Gigabit Ethernet Controller_clipboard0
	Gigabit Ethernet Controller
	Application Processor Unit (APU)
	APU
	APU Components
	APU Sub-Components
	APU Address Map
	NEON Main Features
	L1 Cache Features
	L2 Cache Features
	On-Chip Memory (OCM)
	Snoop Control Unit (SCU)
	Cache Coherency Using SCU
	System Level Control Register (SLCR)
	Zynq Clocks
	System Clocks
	CPU Clock
	PL Clocks

