‘ INSTITUT NATIONAL
DES SCIENCES A A
IN A APPLIQUEES '— 5
TOULOUSE

Course 02: PS-PL intertace

CHERIF Bilel

5A-SIEC

Xilinx Zynq 7000

Programmable

- o =
ogic (PL) %
>
_]TAG g NOR Flash
2
Controller Processing >
W

-I —

B0 e 5 o

* A standard

— All units talk based on that standard
- All units can talk easily to each other
« Maintenance

- Design is easily maintained/updated,
debugged

e Re-use

- Units can be easily re-used in other
desigs

SO Bl e

A Standard Way of
Communication between
The Module and the Bus!

Shared
Memory

BUS

Digital
Signal
Processor

ANMBA

Digital Highway from ARM

AHB

AXI

AMBA 3.0
(2003)

Older Performance

AMBA: Advanced Microcontroller Bus Architecture
AXI: Advanced Extensible Interface

Newer

AXI vsS AHB

single channel Bus multi- channel Bus

Low power Uses around 50 % more power

B

i Ml I

12C Master

Slave 1
(ADC)

Slave 2
(LCD)

Slave 3
(Sensor)

Vdd

SDA
SCL

Master
Interface

Write Address

Write Data

Write Response

Read Address

Read Data

Slave
Interface

Channel connections between master and slave

interfaces

Terminology

e Transaction :

- Transfer of data from one point in the
hardware to another point

« Master : Initiates the transaction

« Slave : Responds to the initiated
transaction

BB

BB

* Two 32-bit Master AXI ports (PS master)

* Two 32-bit Slave AXI ports (PL Master)

* Four 32/64-bit Slave High Performance Ports (PL Master)

* One 64-bit Slave Accelerator Coherency Port (ACP) (PL Master)
* Four clocks from the PS to the PL

* PSto PL Interrupts

* PLto PS Interrupts

ARl nter) o

The Zyng SoC supports three different AXI transfer types that you can use to interface
the PS to the PL side of the device:

- AX14 Burst transfers
- AXI4-Lite for simple control interfaces
- AX14-Streaming for unidirectional data transfers

The theoretical bandwidths of each of the interfaces are defined in the table below:

I T R

AXIGPIO 150MHz 600 MBps 600 MBps 1200 MBps 2400 MBps
AXI HP 64 150 MHz 1200 MBps 1200 MBps 2400 MBps 4 9600 MBps
AXI ACP 64 150MHz 1200 MBps 1200 MBps 2400 MBps 1 2400 MBps

ARl nter) o

To DDR
Controller

Programmable
Logic to Memory

Processing From Programmable Logic

System
Master

Processing
System Slave
Iinterconnect

Iinterconnect

Masterto PL Slave From PL

A

AMBA Enhancements for FPGAs
(2003)
Same Spec t'““"'“----v------i-------'
' | f)

Interface Features Similar to
Memory Map / Full Traditional Address/Data Burst PLBv46, PCI
(AXI4) (single address, multiple data)
Streaming Data-Only, Burst Local Link / DSP Interfaces / FIFO /
(AXI4-Stream) FSL
Lite Traditional Address/Data—No Burst PLBv46-single
(AXI4-Lite) (single address, single data) OPB

BuUrst

-
B

- - . 0 . .

. -

. -

. - ' . - -

. - . . .

. . * .
- : s .
. . - -
. . z 2
: s . . .
. . » . . ' - . . .
e ' = . » . . - »
reéss — : : v T
i ® s . . - . g . -
& - . . .
E N - . ’ ' - ’ . !
E . - ' . . - . . =
= . » -
. - ”
M . » .
s . ' , M .

Data — ; ;
BURST:: @ | @ |

S R e R . 2
Address ——4ip————— 4D

Data

AXlIL nanrols

The AXl interface has separate and independent read and write
channels that can be used simultaneously.

Each channel has its own address and data buses.

Both channels are non-posted (there is always a response).

- In the read case the response is simply the read data coming
back.

- For a write, a separate response bus acknowledges data delivery

AXlcniannels

Write channel —

Read channel

Write Address/ Control

>

Write response channel

- AWREADY
Read Address/ Control >

- ARREADY

AXI Master Write data >
\"" WREADY

< Read data

RREADY N

< Write Responce

BREADY

AXI Slave

Read Channels

Master
interface

Read address channel

Address
and
control

Read data channel

Read
data

Slave
interface

Write Channels

Write address channel

Address
and
control
—_— |
Write data channel
Master Write Slave
interface data interface

Write response channel

Write
response

AXI Lite and AXI Full

AXILITE

- No burst

- Data width 32 or 64 only - Xilinx IP only supports 32-bits

-Very small footprint

- Bridging to AXI4 handled automatically by AXI_Interconnect (if needed)

AXI FULL

- Sometimes called “Full AXI” or “AXI Memory Mapped” - Not ARM-sanctioned names
- Single address multiple data - Burst up to 256 data beats

- Data Width parameterizable - 1024 bits

ALl Blean

. ...t data channel

Master Slave
interface data data data data interface

ALl Blean

No address channel, no read and write, always just master to slave
- Effectively an AXI4 “write data” channel Unlimited burst length
- Protocol allows merging, packing, width conversion

- Supports sparse, continuous, aligned, unaligned streams

Yo A N I O I Y O O Y Y I O Y

TLAST | \
™auoc I 1_
TREADY L S e
ToaTA I PO YPTICTA(PZ Y B3 (P4 Y FS CT

AXI Lite signals

Global Writeaddress Writedata Writeresponse Readaddress Readdata

channel channel channel channel channel
ACLK AWVALID WVALID BVALID ARVALID RVALID
ARESETn AWREADY WREADY BREADY ARREADY RREADY
n AWADDR WDATA BRESP ARADDR RDATA

AWPROT WSTRB ARPROT RRESP

AXI Channel handshaking

Handshaking

* AXl uses a valid/ready handshake acknowledge
* Each channel has its own valid/ready

Address (read/write)

Data (read/write)

Response (write only)
* Flexible signaling functionality

Inserting wait states

Always ready

Same cycle acknowledge

ACLK

INFORMATION .

woL__ LT
o] |\

Note:

It is up to the master to assert the valid signal and
the slave to assert the ready signals for all channels
except the read data channel where the slave
asserts valid to indicate that it is returning data.

The agent that asserts ready determines the
flexibility as seen in the three waveform options.

s 50 550 gy W gy Sy
INFORMATION | X ']

VALID? |] AN

READY:_” ! \

ACLK i B il B |
INFORMATION [
VALID | |

BN gy, W
READY | O |

In any transaction:

« the VALID signal of one AXI component must
not be dependent on the READY signal of the
other component in the transaction

- the READY signal can wait for assertion of the
VALID signal.

Read Transaction :

« the slave can wait for ARVALID to be asserted
before it asserts ARREADY

 the slave must wait for both ARVALID and
ARREADY to be asserted before it starts to
return read data by asserting RVALID.

ARVALID »» RVALID
ARREADY

RREADY

Write transaction

« the master must not wait for the slave to
assert AWREADY or WREADY before asserting
AWVALID or WVALID

« the slave can wait for AWVALID or WVALID, or
both, before asserting AWREADY

« the slave can wait for AWVALID or WVALID, or
both, before asserting WREADY

- the slave must wait for both WVALID and
WREADY to be asserted before asserting
BVALID.

AWVALID

\

AWREADY

WVALID —» BVALID

AR

WREADY

BREADY

AXI Lite IPs example

axi_timer O

P
- S_AXI
P s_axi_araddr]4:0]
4 s_axi_arready
P s_axi_arvalid
P s_axi_awaddr[4:0]
4 s_axi_awready
P s_axi_awvalid

p s_axi_bready
4 s_axi_bresp[1:0]
<4 s_axi_bvalid
) generateoutd
< s_axi_rdata[31:0]
generateout1
P s_axi_rready
i pwml
« s_axi_rresp[1:0])
intermnupt

4 s_axi_rvalid

p s_axi_wdata[31:0]
4 s_axi_wready

P s_axi_wstrb{3:0]
P s_axi_wvalid
capturetrig0
capturetrig1

freeze

& axi_aclk

) s_axi_aresetn
'-..

AXI Timer

axi_uartlite 0

i

<= s_axi

= P s_axi_araddr{3:0]
- < & axi_arready

= P s_axi_arvalid

= P s_axi_awaddr[3:0]
- 4 s axi_awready

= [s axi_awvalid

= P s_axi_bready

- 4 s_axi_bresp[1.0]
= 4 5_axi_bvalid

= 4 s_axi_rdata[31:0]
= P s axi_rready

= < s_axi_rresp[1:0]
= <« s_axi_rvalid

= P s_axi_wdata[31:0]
- o 5 axi_wready

- B s_axi_wstrb[3:0]

= P s_axi_wvalid

s_axi_aclk
q s_axi_aresetn

UART <
interrupt

AXI Uartlite

Role of Write Strobe WSTRB

OLD reg value

Write Data

WSTRB

Resulting reg value

AXI Lite read operation

w It = b & W & U
ACLK B
* ADDR handshake . : ; | | __ |

e Read adresse ARVAurJ?J] -
* DATA handshake arreapy T\ [E ;
* Read Data RDATA E ; |

RVALID' |

Reset=0

Reset=0

Lo

ARReady =1 & ARValid=1

Waiting for

\ address

RReady =1 & RValid=1

'

RLast =1 \

/w:aiting for data

Reset=0

BReady =1

v

Last data
Transferred

T

Y

/ Wait for

OK

\ response

)

Bvalid =1

Reset=0

Connecting Masters and Slaves

AXI AXI
Master1 W Master 1
(CPU) (CPU)

AXI
_ - AXI
M(a;’ﬁ)z o Master 2
(DMA)

Bisies e el o izaicas

Interface

A point-to-point connection for passing data, addresses,

and hand-shaking signals between master and
slave clients within the system

Interconnect

A switch which manages and directs traffic between
attached AXI interfaces

Bisies e el o izaicas

Master 1 Master 2 Master 3

E Interface
Interconnect

Interface »
Slave 1 Slave 2 Slave3 | | Slaved

Use Models

The AXI Interconnect core connects one or more AXI memory-
mapped master devices to one or more memory-mapped slave
devices.

* Pass Through

* Conversion Only

° N-to-1 Interconnect
* 1-to-N Interconnect

* N-to-M Interconnect (Crossbar Mode)

Pass Through

* When there is only one master
device and only one slave
device connected to the AXI
Interconnect core, and the AXI
Interconnect core is not
performing any optional
conversion functions or
pipelining, all pathways
between the slave and master
interfaces degenerate into direct
wire connections with no
latency and consuming no logic
resources.

Master O

Interconnect

Slave 0

Conversion Only

The AXI Interconnect core can
perform various conversion
and pipelining functions
when connecting one master
device to one slave device.
These conversion and
pipelining functions are:

 Data width conversion
* Clock rate conversion

* AXIl4-Lite slave adaptation

Master 0

Interconnect

Slave 0

Nte T gng O BREerce et

Note :

A bus arbiter is a device used in a multi-master bus system to
decide which bus master will be allowed to control the bus
for each bus cycle. The most common kind of bus arbiter is
the memory arbiter in a system bus system.

* A memory arbiter is a device used in a shared memory
system to decide, for each memory cycle, which CPU will be
allowed to access that shared memory.

Lt ahe 10 B o o

N-to-M Interconnect (Crossbar Mode)

Interconnect

Write Data Crossbar

Read Data Crossbar

AX| Interconnect

* |D Reflection mechanism :

additional ID bits would not be seen by the AXI master. So
these "routing" bits are generated by the AXI interconnect,

not the AXI master.

AXI Aadress mapping

Address Decoding Table

UART : 0x40000000 - 0x40000FFF
GPIO : 0x40001000 - Ox40001FFF
RAM : 0x40010000 - Ox4001FFFF

Y

AXI
Master 1
(CPU)

AXI
Master 2
(DMA)

Address Range : 4K
Address Offset : 0x40000000
Address : 0x40000000 - 0x40000FFF

Address Range : 4K
Address Offset : 0x40001000
Address : 0x40001000 - O0x40001FFF

Address Range : 64K
Address Offset : 0x40010000
Address : 0x40010000 - Ox4001FFFF

AXI 4 and AXI Lite

[AXi4 AXI4-Lite AXI4 AXid-Lite AXI4 AXiaLite | [AXi AXI4-Lite
5 ACLK ARD [
O ARESETN ARADDR g
ARLEN K
~ ARSIZE -
ﬁ ARBURST g
S| ARLOCK '
\Z| ARCACHE | ARCACHE _
o[ARPROT | ARPROT
S ARQOS
ARREGION
T ARUSER [
ARVALID

ARREADY

AX| Interconnect

AXI
Master O
(CPU2)

AXI
Master 1
(CPU)

AXI
Master 2
(DMA)

AXBURST signal

ARBURSTI[1:0]

AWBURST[1:0] Burst type Description Access

b00 FIXED Fixed-address burst FIFO-type

b0l INCR [ncrementing-address burst Normal sequential memory
b10 WRAP Incrementing-address burst that wraps ~ Cache line

to a lower address at the wrap boundary

bll Reserved

WRAP Burst mode

Byte lane used

DATA[7:0]

DATA[15:8]

DATA[23:16]

DATA[31:24]

DATA[7:0]

1st transfer
2nd transfer
3rd transfer
4th transfer

5th transfer

Read Burst

110 & 2 13 3l 5% U6 0T a8l 90 E0 G T2 i3
ACLK|

ARADDRII ™ &)
ARVALID _[/ \\

ARREADY

S S I . B 1 02

s Il 6 AR08 008 008 8 0 Sl RAELG i i5
e e S R e U e e

THANK YOU:)

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47

