

Course 02: PS-PL interface

CHERIF Bilel

5A-SIEC

SOC Bus

A standard

- All units talk based on that standard
- All units can talk easily to each other
- Maintenance

 Design is easily maintained/updated, debugged

Re-use

 Units can be easily re-used in other desigs

Soc Bus

AMBA

AXI vs AHB

AHB : Advanced High-performance Bus	AXI : Advanced eXtensible Interface
Shared bus	Interface
single channel Bus	multi- channel Bus
each of the bus masters will connect to a single-channel shared bus	connect to a Read data channel, Read address channel, Write data channel, Write address channel and Write response channel
Low power	Uses around 50 % more power

Bus vs Interface

Channel connections between master and slave interfaces

Terminology

- Transaction :
 - Transfer of data from one point in the hardware to another point

- Master : Initiates the transaction
- Slave : Responds to the initiated transaction

PS-PL interfaces

PS-PL interfaces

- Two 32-bit Master AXI ports (PS master)
- Two 32-bit Slave AXI ports (PL Master)
- Four 32/64-bit Slave High Performance Ports (PL Master)
- One 64-bit Slave Accelerator Coherency Port (ACP) (PL Master)
- Four clocks from the PS to the PL
- PS to PL Interrupts
- PL to PS Interrupts

AXI interface

The Zynq SoC supports three different AXI transfer types that you can use to interface the PS to the PL side of the device:

- AXI4 Burst transfers
- AXI4-Lite for simple control interfaces
- AXI4-Streaming for unidirectional data transfers

The theoretical bandwidths of each of the interfaces are defined in the table below:

Interface	Width	IF Clock	Read BW	Write BW	Combined	No Ports	Total BW
AXI GPIO	32	150 MHz	600 MBps	600 MBps	1200 MBps	2	2400 MBps
AXI HP	64	150 MHz	1200 MBps	1200 MBps	2400 MBps	4	9600 MBps
AXI ACP	64	150 MHz	1200 MBps	1200 MBps	2400 MBps	1	2400 MBps

AXI interface

AXI Types

Interface	Features	Similar to
Memory Map / Full (AXI4)	Traditional Address/Data Burst (single address, multiple data)	PLBv46, PCI
Streaming (AXI4-Stream)	Data-Only, Burst	Local Link / DSP Interfaces / FIFO / FSL
Lite (AXI4-Lite)	Traditional Address/Data—No Burst (single address, single data)	PLBv46-single OPB

Burst

AXI Channels

The AXI interface has separate and independent read and write channels that can be used simultaneously.

Each channel has its own address and data buses.

Both channels are non-posted (there is always a response).

- In the read case the response is simply the read data coming back.

- For a write, a separate response bus acknowledges data delivery

AXI channels

Read Channels

Write Channels

AXI Lite and AXI Full

AXI LITE

- No burst
- Data width 32 or 64 only Xilinx IP only supports 32-bits
- Very small footprint
- Bridging to AXI4 handled automatically by AXI_Interconnect (if needed) AXI FULL
- Sometimes called "Full AXI" or "AXI Memory Mapped" Not ARM-sanctioned names
- Single address multiple data Burst up to 256 data beats
- Data Width parameterizable 1024 bits

AXI Stream

AXI Stream

No address channel, no read and write, always just master to slave

- Effectively an AXI4 "write data" channel Unlimited burst length
- Protocol allows merging, packing, width conversion
- Supports sparse, continuous, aligned, unaligned streams

AXI Lite signals

Global	Write address channel	Write data channel	Write response channel	Read address channel	Read data channel
ACLK	AWVALID	WVALID	BVALID	ARVALID	RVALID
ARESETn	AWREADY	WREADY	BREADY	ARREADY	RREADY
-	AWADDR	WDATA	BRESP	ARADDR	RDATA
-	AWPROT	WSTRB	_	ARPROT	RRESP

AXI Channel handshaking

Handshaking

- AXI uses a valid/ready handshake acknowledge
- Each channel has its own valid/ready Address (read/write) Data (read/write) Response (write only)
 Flexible signaling functionality
 - Inserting wait states
 - Always ready
 - Same cycle acknowledge

Note:

It is up to the master to assert the valid signal and the slave to assert the ready signals for all channels except the read data channel where the slave asserts valid to indicate that it is returning data.

The agent that asserts ready determines the flexibility as seen in the three waveform options.

In any transaction:

• the VALID signal of one AXI component must not be dependent on the READY signal of the other component in the transaction

• the READY signal can wait for assertion of the VALID signal.

Read Transaction :

• the slave can wait for ARVALID to be asserted before it asserts ARREADY

• the slave must wait for both ARVALID and ARREADY to be asserted before it starts to return read data by asserting RVALID.

Write transaction

- the master must not wait for the slave to assert AWREADY or WREADY before asserting AWVALID or WVALID
- the slave can wait for AWVALID or WVALID, or both, before asserting AWREADY
- the slave can wait for AWVALID or WVALID, or both, before asserting WREADY
- the slave must wait for both WVALID and WREADY to be asserted before asserting BVALID.

AXI Lite IPs example

Role of Write Strobe WSTRB

OLD reg value

0xDE	0x05	0xBE	0x00
Write Data			
0X02	0xAD	0x15	0xEF
WSTRB			
0	1	0	1
Resulting reg value			
0xDE	0xAD	0xBE	0xEF

AXI Lite read operation

- ADDR handshake
- Read adresse
- DATA handshake
- Read Data

Connecting Masters and Slaves

Interconnect vs. Interface

Interface

A point-to-point connection for passing data, addresses, and hand-shaking signals between master and slave clients within the system

Interconnect

A switch which manages and directs traffic between attached AXI interfaces

Interconnect vs. Interface

Use Models

The AXI Interconnect core connects one or more AXI memorymapped master devices to one or more memory-mapped slave devices.

- Pass Through
- Conversion Only
- N-to-1 Interconnect
- 1-to-N Interconnect
- N-to-M Interconnect (Crossbar Mode)

Pass Through

• When there is only one master device and only one slave device connected to the AXI Interconnect core, and the AXI Interconnect core is not performing any optional conversion functions or pipelining, all pathways between the slave and master interfaces degenerate into direct wire connections with no latency and consuming no logic resources.

Conversion Only

The AXI Interconnect core can perform various conversion and pipelining functions when connecting one master device to one slave device. These conversion and pipelining functions are:

- Data width conversion
- Clock rate conversion
- AXI4-Lite slave adaptation

N-to-1 and 1-to-N Interconnect

Note :

A bus arbiter is a device used in a multi-master bus system to decide which bus master will be allowed to control the bus for each bus cycle. The most common kind of bus arbiter is the memory arbiter in a system bus system.

• A memory arbiter is a device used in a shared memory system to decide, for each memory cycle, which CPU will be allowed to access that shared memory.

N-to-1 and 1-to-N Interconnect

N-to-M Interconnect (Crossbar Mode)

AXI interconnect

• ID Reflection mechanism :

additional ID bits would not be seen by the AXI master. So these "routing" bits are generated by the AXI interconnect, not the AXI master.

AXI Address mapping

AXI 4 and AXI Lite

	AXI4	AXI4-Lite	_	
p	ACLK			
Q	ARES	SETN	Ċ	
	AWID			
	AWA	AWADDR		
	AWLEN			
	AWSIZE			
ess	AWBURST		4	
	AWLOCK		à	
dre	AWCACHE			
Ad	AWPROT			
ite	AWQOS			
٧٢	AWSIZE			
	AWREGION			
	AWLOCK			
	AWUSER			
	AWVALID			
	AWR	EADY		

ſ	AXI4	AXI4-Lite	
I	WDATA	WDATA	
	WSTRB	WSTRB	
í	WLAST		
	WUSER		
	WVA	\LID	
WREADY			
	BID		
	BRESP	BRESP	
	BUSER		
	BVALID		
	BREADY		

	AXI4	AXI4-Lite	
	ARID		
	ARA	DDR	
	ARLEN		
	ARSIZE		
ess	ARBURST		
dre	ARLOCK		
Ρq	ARCACHE	ARCACHE	
ad	ARPROT	ARPROT	
Зе Че	ARQOS		
	ARREGION		
	ARUSER		
	ARV	ALID	
	ARREADY		

	AXI4	AXI4-Lite
	RID	
a	RDATA	RDATA
Dat	RRESP	RRESP
Р	RLAST	
ea	RUSER	
R	RVA	LID
	WRE	ADY

AXI interconnect

AXBURST signal

ARBURST[1:0] AWBURST[1:0]	Burst type	Description	Access
b00	FIXED	Fixed-address burst	FIFO-type
b01	INCR	Incrementing-address burst	Normal sequential memory
b10	WRAP	Incrementing-address burst that wraps to a lower address at the wrap boundary	Cache line
b11	Reserved		_

WRAP Burst mode

	Byte lar	ne used		
			DATA[7:0]	1st transfer
		DATA[15:8]		2nd transfer
	DATA[23:16]			3rd transfer
DATA[31:24]				4th transfer
			DATA[7:0]	5th transfer

Read Burst

THANK YOU:)